
Time and Space complexity 
 

Sometimes, there are more than one way to solve a problem. We need to learn how 

to compare the performance of different algorithms and how to choose the best one to 

solve a particular problem. While analyzing an algorithm, we mostly consider time 

complexity and space complexity.  

 Time complexity of an algorithm quantifies the amount of time taken by an 

algorithm to run as a function of the length of the input.  

 Space complexity of an algorithm quantifies the amount of space or memory 

taken by an algorithm to run as a function of the length of the input. 

 

Time and space complexity depends on lots of things like hardware, operating 

system, processors, etc. However, we don't consider any of these factors while 

analyzing the algorithm. We will only consider the execution time of an algorithm. 

 

E-OLYMP 7829. Sum of array elements You are given array, and you have to 

find the sum of its elements. 

Simple solution to this problem is to traverse the whole array and sum up all its 

elements: 

 
s = 0; 

for(i = 0; i < n; i++) 

  s = s + m[i]; 

 

If the size of array is n, we need to make n operations. The total time depends on 

the length of array: if n = 10, we should make 10 additions, if n = 106, we should make 

106 additions. 

 

Order of growth is how the time of execution depends on the length of the input. In 

the above example, we can clearly see that the time of execution is linearly depends on 

the length of the array. Order of growth will help us to compute the running time with 

ease. We will ignore the lower order terms, since the lower order terms are relatively 

insignificant for large input. We use different notation to describe limiting behavior of a 

function. 

 

Big O-notation 

Definition. Let f(n) and g(n) be two functions of n (n is usually the input size in 

algorithm analysis). We say that  

f(n) = O(g(n)) 

if ∃ 𝑛0 ∈ N and constant c > 0 such that |f(n)| ≤ c|g(n)| ∀n  ≥ n0. 

O-notation gives an upper bound for a function to within a constant factor. 

https://www.e-olymp.com/en/problems/7829


 
 

O-notation gives us an upper limit of the execution time i.e. the execution time in 

the worst case.  

 

Let the size of linear array is n. The complexity of finding the sum of all elements 

is O(n). 

 

The complexity of solution for each of the next problem is O(n): 

 

E-OLYMP 904. Increase by 2 You are given an array, increase each its non-

negative element by 2. 

 

E-OLYMP 7831. Sum without maximal Find the sum of all array elements, not 

equal to maximal. 

 

E-OLYMP 928. The sum of the largest and the smallest Find the sum of the 

smallest and the largest element in array. 

 

Example. Find the complexity of the next code: 

 
count = 0; 

for(i = 0; i < n; i++) 

for(j = 0; j < n; j++) 

  count++; 

 

Let’s see how many times count++ will run. It will run n2 times, so the time 

complexity is O(n2). 

 

Example. Find the complexity of the next code: 

 
count = 0; 

for(i = 0; i < n; i++) 

for(j = 0; j < i; j++) 

  count++; 

 

When i = 0, j loop will run 0 times. 

When i = 1, j loop will run 1 times. 

https://www.e-olymp.com/en/problems/904
https://www.e-olymp.com/en/problems/7831
https://www.e-olymp.com/en/problems/928


When i = 2, j loop will run 2 times. 

. . . 

When i = n – 1, j loop will run n – 1 times. 

The total number of times count++ will run is  

0 + 1 + 2 + … + (n – 1) = n * (n – 1) / 2 

So the time complexity is O(n2). 

 

Below we’ll list the main classes used in the analysis of algorithms: 

 f(n) = O(1) constant 

 f(n) = O(log(n)) logarithmic growth 

 f(n) = O(n) linear growth 

 f(n) = O(n*log(n)) quasilinear growth 

 f(n) = O(nm) = nO(1) polynomial growth 

 f(n) = O(2n) exponential growth 

For exampe, the grows O(n2) is called quadratic, the grows O(n3) is called cubic. 

 

The complexity of solution for each of the next problem is O(1): 

 

E-OLYMP 519. Sum of squares Find the sum of the squares of two numbers. 

 

E-OLYMP 108. Median number Three different numbers a, b, c are given. Print 

the median number. 

 

Example. Find the complexity of the next code: 

 
count = 0; 

for(i = n; i > 0; i /= 2) 

for(j = 0; j < i; j++) 

  count++; 

 

When i = n, j loop will run n times. 

When i = n / 2, j loop will run n / 2 times. 

When i = n / 4, j loop will run n / 4 times. 

. . . 

When i = 1, j loop will run 1 times. 

The total number of times count++ will run is  

n + n / 2 + n / 4 + … + 1 = 2*n 

The time complexity is O(n). 

 

E-OLYMP 2860. Sum of integers on the interval Find the sum of all integers 

from a to b. Integers are no more than 2 * 109 by absolute value. 

► Let's solve the problem with for loop: 

 
res = 0; 

for(i = a; i <= b; i++) 

  res = res + i; 

https://www.e-olymp.com/en/problems/519
https://www.e-olymp.com/en/problems/108
https://www.e-olymp.com/en/problems/2860


 

Number of iterations is proportional to amount of numbers on the interval [a..b]. 

Let n = b – a + 1 be the size of the interval. To run a program, we must make n 

iterations in the for loop. For example, if n = 2 * 109, we must make 2 * 109 iterations. 

Number of operations increase linearly with the value of n. So time complexity is T(n) 

= O(n). 

 

The speed of nowadays computers is approximately 109 operations per 2 seconds. 

So we can also estimate the running time of our programs in seconds. 

 

Time limit for the problem 2860 (Sum of integers on the interval) is 1 second. So 

for loop solution will give Time Limit Exceeded (TLE) on some test cases. We must 

find an algorithm faster than O(n). 

 

We can notice that numbers from a to b form an arithmetic progression with 

difference d = 1. And their sum according to the formula equals to 
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

ab
ba

 

Solution to the problem can be just one line: 
 

res = (a + b) * (b - a + 1) / 2; 

 

This formula has 5 arithmetic operations regardless the value of n. So complexity 

of this solution is O(1) and it is accepted in 1 second. 

 

Example. Consider the next triple loop with complexity O(n3).  

time_t represents the system time and date as some sort of integer. Function 

time(0) or time(NULL) returns number of seconds since January 1, 1970.  

Change the value of n and estimate the running time of the program. 
 

#include <stdio.h> 

#include <ctime> 

 

int i, j, k, n; 

long long cnt; 

 

int main(void) 

{ 

  // Number of sec since January 1,1970 

  time_t start = time(0); 

  printf("Number of seconds started: %lld\n", start); 

 

  n = 1000; // 10^9 operations per 2 seconds, CORE i5 

  for (i = 1; i <= n; i++) 

  for (j = 1; j <= n; j++) 

  for (k = 1; k <= n; k++) 

    cnt++; 

  

  printf("Counter = %lld\n", cnt); 

  time_t finish = time(0); 



  printf("Number of seconds finished: %lld\n", finish); 

 

  printf("Running time of the program in seconds: %lld\n", finish - 

start); 

  return 0; 

} 

 

Using the function clock(), you can estimate the running time in milliseconds. The 

C library function clock(void) returns the number of clock ticks elapsed since the 

program was launched. To get the number of seconds used by the CPU, you will need to 

divide by CLOCKS_PER_SEC.  

Try to run the program with n = 1000 and n = 2000. 
 

#include <stdio.h> 

#include <ctime> 

 

int i, j, k, n; 

long long cnt; 

 

int main(void) 

{ 

  clock_t start = clock(); 

 

  n = 1000; 

  for (i = 1; i <= n; i++) 

  for (j = 1; j <= n; j++) 

  for (k = 1; k <= n; k++) 

    cnt++; 

  

  printf("Counter = %lld\n", cnt); 

  clock_t finish = clock(); 

  // now you can see running time milliseconds 

  printf("Running time of the program in seconds: %f\n", 

(float)(finish - start) / CLOCKS_PER_SEC); 

  return 0; 

} 

 

E-OLYMP 1616. Prime number? Check if the given number n is prime. The 

number is prime if it has no more than two divisors: 1 and the number itself. 

► If number n is composite, it has a divisor not greater than  n . To check if n is 

prime, we must check its divisibility by 2, 3, …,  n . Complexity  nO . 
 

int IsPrime(int n) 

{ 

  for (int i = 2; i <= sqrt(n); i++) 

    if (n % i == 0) return 0; 

  return 1; 

} 

 

https://www.e-olymp.com/en/problems/1616

